基于干扰管理的异构 VLC/WiFi 网络子信道分配

刘焕淋1*,林振宇1,陈勇2,蒲欣1

¹重庆邮电大学通信与信息工程学院,重庆 400065; ²重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆 400065

摘要 针对异构 VLC/WiFi 网络的多接入点布局的信道干扰问题,提出了改进遗传算法的干扰抑制子信道分配 (IGA-ISSA)方案。该方案依据 VLC 信道质量状况,为用户决策接入网络。对接入 VLC 网络的用户,根据用户位 置特征划分优先等级,采用冲突图为不同等级用户设计干扰抑制的子信道分配方案,并使用改进遗传算法优化 VLC 子信道的分配方案。对需要接入 WiFi 网络的用户,根据用户的差异化速率需求为用户分配子信道。仿真结 果表明,所提方案能提高 VLC/WiFi 网络的吞吐量与用户满意度。

关键词 光通信; VLC/WiFi 网络; 可见光通信; 干扰抑制; 子信道分配; 吞吐量

中图分类号 TN929.74 文献标识码 A

doi: 10.3788/CJL201946.1206002

Subchannel Resource Allocation in Heterogeneous VLC/WiFi Networks Based on Interference Management

Liu Huanlin^{1*}, Lin Zhenyu¹, Chen Yong², Pu Xin¹

¹School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

²Key Laboratory of Industrial Internet of Things and Network Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract In this study, we propose an improved genetic algorithm, i.e., an interference suppression subchannel allocation (IGA-ISSA) scheme, to solve the channel interference problem that can be attributed to the layout of multiple access points in heterogeneous VLC/WiFi networks. In IGA-ISSA, decision-making is designed for the user to select a VLC or WiFi network in accordance with the VLC channel quality. Further, the users are classified into three priority levels according to the user location characteristics in VLC. Subsequently, a subchannel allocation scheme is designed based on the user conflict graph with respect to different levels for suppressing the interference. Furthermore, IGA-ISSA is introduced to optimize the subchannel allocation for the VLC network. Finally, a WiFi subchannel allocation scheme is designed based on the different user-required rates with respect to the allocated WiFi subchannel in case of users accessing a WiFi network. The simulation results denote that the IGA-ISSA scheme can improve the throughput and user satisfaction with respect to a VLC/WiFi network.

Key words optical communications; VLC/WiFi network; visible light communication; interference suppression; subchannel allocation; throughput

OCIS codes 060.4510; 060.4256; 200.2605; 040.5160

1 引 言

可见光通信(VLC)因具有功耗低、安全性高和 无需频谱认证等优势,近年来在无线接入网中受到 了广泛的关注和研究^[1-2]。然而,仅由 VLC 构成的 单一无线通信系统存在着覆盖范围小、上行信号传输实现困难、光链路脆弱,以及单个发光二极管 (LED)调制带宽有限等问题^[3],因此,越来越多的研 究人员开始关注基于 VLC 的异构 VLC/WiFi 网 络^[4]。在异构 VLC/WiFi 网络中,为实现较大范围

收稿日期: 2019-07-01; 修回日期: 2019-08-05; 录用日期: 2019-08-19

基金项目:国家自然科学基金(51977021)、重庆市自然科学基础研究与前沿探索项目(cstc 2019jcyj-msxmX0613)

^{*} E-mail: liuhl@cqupt.edu.cn

覆盖,提高 VLC 网络的通信带宽,需要布置多个 VLC 接入点(AP),这是因为 VLC 被遮挡、用户的 位置移动、通信场合其他物体阻挡,以及 VLC AP 的覆盖边缘和盲区等都会造成 VLC 通信光线信道 差的问题,而补充 WiFi 覆盖的异构 VLC/WiFi 解 决了通信覆盖时产生的用户接入 VLC 或 WiFi 的 网络接入选择问题,以及 VLC 的 AP 之间存在干扰 时的子信道分配问题,这些问题的解决方法将影响 网络吞吐量和用户体验质量^[5]。因此,为充分利用 各 VLC AP 有限的调制带宽,研究异构 VLC/WiFi 网络的 VLC 信道质量变化状况,协调用户子信道 资源分配方法,为用户设计合理的子信道分配是极 有意义的。

Bai等^[5]提出了基于协同传输与于扰抑制的 VLC网络子信道分配方案。文献「6〕研究了将基于 正交频分复用(OFDM)的 VLC 系统带宽离散为一 组子信道块,依据链路层的时延服务质量(QoS)为 用户分配子信道。文献「7]将电力线通信(PLC)作 为异构 VLC/WiFi 网络进行信息馈入,在级联 PLC-VLC 网络中研究子信道分配,并在异构 VLC/ WiFi 网络中为用户进行功率分配,但算法为了避免 VLC 用户受到同信道干扰,采用 PLC 系统对子信 道资源进行统一调度,忽略了不相邻小区中用户资 源的复用。这些基于干扰抑制的子信道分配方案均 降低了 VLC 网络的吞吐量和资源利用率。文献 「8]提出了一种异构 VLC/LTE (Long Term Evolution)网络联合资源分配方案,该方案对于接 入 VLC 网络的用户利用极值法分配子信道,但不 进行功率分配的优化,且该方案在 LTE 移动网络中 依据注水法优化用户的分配功率,并利用极值法进 行子信道分配,导致该方案在房间内用户密度较小时 性能几乎没有提升。Wu 等^[9]在异构 VLC/RF 网络 中提出了一种在线大、小时间尺度自适应网络资源和 功率分配的联合优化方案,但该方案在大时间尺度上 是非凸优化问题,忽视了 VLC 网络中位置不好的用 户的通信需求,削弱了用户之间使用网络速率的公平 性。基于此,本文提出了一种基于改进遗传算法的异 构 VLC/WiFi 网络干扰抑制子信道分配方案,设计了 基于用户位置特征对小区间同信道进行干扰管理的 资源分配方法,提升了系统吞吐量。

2 异构 VLC/WiFi 网络模型

图 1 为室内异构 VLC/WiFi 网络下行链路模型。 该异构网络房间仅放置 1 个 WiFi AP,这是由于 WiFi 覆盖范围较广,1个 WiFi AP 就可保证 WiFi 信号覆 盖整个房间。天花板上安装了 M 个 VLC AP。考虑 到现有通信终端大多不具有光信号发送能力,且用户 上行传输需求带宽不高等情况,假设异构 VLC/WiFi 网络上行信号的可靠传输将由 WiFi 链路承载。所有 VLC 和 WiFi AP 都将通过电力线连接到中心控制器 上,中心控制器负责用户接入 AP 和资源分配决策, 保证用户通信质量。对用户在 AP 间切换是通过中 心控制器选择 AP 接入实现。

图 1 异构 VLC/WiFi 网络下行链路模型 Fig. 1 Downlink model of heterogeneous VLC/WiFi network

在异构 VLC/WiFi 网路中,第j个用户 u_j 接入 第i个 VLC AP_i的子信道n的信干比 $\xi_{j,i,n}^{\text{VLC}}$ 为

$$\boldsymbol{\xi}_{j,i,n}^{\text{VLC}} = \frac{\sum_{i \in A_{\text{VLC}}} [\gamma P_{j,i,n}^{\text{VLC}} H_{j,i,n}^{\text{VLC}}(0)]^2}{\sum_{i' \in A_{\text{VLC}}} \sum_{k \in U} [\gamma P_{k,i',n}^{\text{VLC}} H_{k,i',n}^{\text{VLC}}(0)]^2 + \eta^{\text{VLC}}},$$
(1)

式中:i 表示第i 个 VLC AP;i'表示第i'个 VLC AP;j 表示第j 个用户;U 为用户集合;k 表示用户 集合U中第k 个用户; $P_{k,\ell,n}^{VLC}$ 为第k 个用户接入第i'个 VLC AP 的第n 条信道的发射功率; γ 为 PD 的 光电转换系数; $P_{j,\ell,n}^{VLC}$ 为 VLC AP $_i$ 在子信道n上的 发射功率; A_{VLC} 为 VLC AP 集合; A'_{VLC} 为 VLC AP 干扰集合; $H_{j,\ell,n}^{VLC}$ (0)为 VLC AP $_i$ 与 u_j 间的信道增 益; $H_{k,\ell,n}^{VLC}$)为 VLC 的子信道n上的干扰信道增 益; n^{VLC} 为噪声平均功率^[10]。

在室内异构 VLC/WiFi 网络中,VLC 网络与 WiFi 网络无相互干扰,且单个 WiFi AP 即可提供 整个房间的信号覆盖,所以 WiFi 网络的小区间同 信道干扰可忽略,用户 u_i 由 WiFi AP_i利用子信道 n提供服务时的信干比 $\xi_{ii,n}^{Wi}$ 可表示为

$$\xi_{j,i,n}^{\mathrm{Wi}} = \frac{P_{j,i,n}^{\mathrm{Wi}} H_{j,i,n}^{\mathrm{Wi}}}{\eta^{\mathrm{Wi}}}, \qquad (2)$$

式中: $P_{j,i,n}^{Wi}$ 为 WiFi AP_i在子信道 n上的发射功率; η^{Wi} 为 WiFi 系统背景噪声功率; $H_{j,i,n}^{Wi}$ 为用户 u_j 和 WiFi AP_i子信道 n 间的信道增益。

因此,室内异构 VLC/WiFi 网络的子信道分配 问题为

$$\begin{split} \max \sum_{j \in U} R_j, \\ R_j = a_j^{\text{VLC}} \times b^{\text{VLC}} \sum_{i \in A_{\text{VLC}}} \sum_{n \in N_{\text{VLC}}} [s_{j,n} \text{lb}(1 + \boldsymbol{\xi}_{j,i,n}^{\text{VLC}})] + \\ a_j^{\text{Wi}} \times b^{\text{Wi}} \sum_{i \in A_{\text{Wi}}} \sum_{n \in N_{\text{Wi}}} [s_{j,n} \text{lb}(1 + \boldsymbol{\xi}_{j,i,n}^{\text{Wi}})], \end{split}$$

s.t. $a_j^{\text{VLC}}, a_j^{\text{Wi}}, s_{j,i} \in \{0,1\}, a_j^{\text{VLC}} + a_j^{\text{Wi}} = 1, (3)$ 式中: a_j^{VLC} 为1表示用户*j*接入VLC网络,否则为 0; a_j^{Wi} 为1表示用户*j*接入WiFi网络,否则为0; b^{VLC} 为VLC网络分配的单位带宽值; N_{VLC} 为VLC 网络各AP可提供的子信道集合; b^{Wi} 为WiFi网络 分配的单位带宽值; R_j 为用户 u_j 吞吐量; N_{Wi} 为 WiFi网络中各AP可提供的子信道集合; $s_{j,n}$ 为二 进制子信道分配变量,当且仅当用户 u_j 分配子信道 n时, $s_{j,n} = 1$; A_{Wi} 为WiFi AP集合。本文所提方案 通过优化用户信道分配,降低了小区对用户的干扰, 提升了系统吞吐量。由文献[11]可知,当子信道数 目大于2或用户数大于1时,动态频谱管理问题被 证明是一个NP 难问题,所以本文利用全局搜索能 力良好的改进遗传算法(IGA)求解子信道分配 结果。

3 改进遗传算法的 VLC/WiFi 干扰 抑制子信道分配(IGA-ISSA)

在异构 VLC/WiFi 网络中,若用户选择 VLC AP 接入网络,则本研究允许多 VLC AP 协同服务 一个用户,若用户可用 VLC AP 的视线传输(LOS) 信号均被物体遮挡或用户处于所有 VLC AP 覆盖 光线信道均不满足通信需求,则用户需要被切换到 WiFi 网络接入。为降低多用户在多 VLC AP 接入 时的子信道间干扰,提出一种基于 IGA 干扰抑制子 信道分配方案:首先,对于接入 VLC 网络的用户, 在用户端构建用户冲突图,求解无干扰的用户集合, 并利用 IGA 算法根据用户子信道分配情况构建染 色体;然后,提出基于用户分级与干扰抑制的子信道 复用方案,并根据子信道复用结果计算遗传算法适 应度函数;最后,为增强遗传算法搜索性能,提出基 于无效信息扰动的染色体交叉方式。

3.1 VLC子信道干扰冲突图的构建

设 VLC 网络中用户集合为 Uvlc, WiFi 的用户

集合为 U_{Wi} 。定义用户覆盖图 $G = \{U, E\}$,顶点集 对应室内用户集合 $U, U = \{u_1, u_2, \dots, u_J\}$, J 为用 户数目, u_J 为第 J 个用户, 边 E 集合为用户 u_j 与 VLC AP_i 的连接关系, $E = \{e_{j,i}\}, j \in U, i \in A_{VLC},$ 当且仅当用户 u_j 由 VLC AP_i 服务时 $e_{j,i} = 1$, 否则 为 0。建立用户冲突图 $G_1 = \{A_{VLC}, E_a\},$ 边由集合 $E_a = \{a_{k,j}\}$ 确定, $k, j \in U, k \neq j, E_a$ 记录用户所受 干扰, 第 k 个用户与第 j 个用户间干扰用元素 $a_{k,j}$ 表示为

 $a_{k,j} = \begin{cases} 1, & \text{if } u_k \text{ and } u_j \text{ served by same VLC AP} \\ 0, & \text{else} \end{cases}$

(4)

图 2 中的用户间可能存在信道干扰,由用户冲 突图 G_1 的虚线连接边表示。由于 u_1 和 u_3 同时由 AP₁服务,在用户冲突图 G_1 中, $a_{1,3}=1$,若此时 u_1 和 u_3 还由 AP₁同一子信道 n 服务,那么 u_3 可能受 到来自 u_1 的小区同信道干扰,因此不能进行子信道 复用。在用户冲突图 G_1 中, $a_{1,5}=0$,表示 u_1 和 u_5 间无干扰,可执行不同 AP 的相同子信道复用,即同 时由子信道 n 服务。因此,图 2 的最大无干扰用户 集合 $P = \{Q_1, Q_2, Q_3, Q_4\}, 其中无干扰用户集合$ $<math>Q_1 = \{u_3\}, Q_2 = \{u_4\}, Q_3 = \{u_2, u_5\}, Q_4 = \{u_1, u_5\}$ 。

Fig. 2 Diagram of user conflict graph

3.2 VLC 网络用户基于改进遗传算法的 VLC 子信道分配设计

3.2.1 染色体构造

染色体 $c(k_1, k_2, \dots, k_{N_{VLC}})$ 表示 VLC 中子信 道分配结果,其中基因长度表示 VLC 网络中子信 道数目,基因位置表示子信道编号,基因 *m* 数值为 $k_m(k_m \in U_{VLC}, m \in N_{VLC})$ 表征子信道 *m* 服务的用 户编号^[12]。例如染色体 $c_1 = (5,4,3,3,2,1,4,5)$ 的 含义为当前 VLC 网络各 VLC AP 共有 8 条子信 道,5 种元素值表示 VLC 网络服务 5 个用户。用户 5 分配的子信道集合 $S_5 = \{1,8\}, 用户 4$ 分配的子信 道集合 $S_4 = \{2,7\}, 用户 3$ 分配的子信道集合 $S_3 = \{3,4\}, 用户 2$ 分配的子信道集合 $S_2 = \{5\}, 用户 1$ 分配的子信道集合 $S_1 = \{6\}$ 。

3.2.2 基于用户分级与干扰抑制的 VLC 子信道 复用方案

为避免小区间同信道干扰,且能最大程度地利 用有限的 LED 调制带宽,提出了一种基于用户分级 与干扰抑制的子信道复用方案,即通过管理 VLC 网络中同信道干扰来提升系统吞吐量。根据冲突图 中用户位置特征对选择 VLC 网络的用户进行优先 级划分,将 VLC 用户分为高、中、低 3 个优先级,分 别执行不同的子信道复用方案。

高优先级用户:将多个 VLC AP 重叠覆盖下的 用户归属于高优先级用户集合 L_h ,且 $L_h \subset U$ 。分配 L_h 的用户独占覆盖 AP 的子信道,以降低用户间 干扰。

为有效筛选其他优先级用户,在高优先级用户 u_j 子信道复用完成后,将权重矩阵 W 的元素 $w_{j,i}$ 更 新为 $w_{j,i}-1$,且 $i \in A_{VLC}, u_j \in L_h \subset U$,其中 L_h 表 示 A_{VLC} 集合中高优先级用户构成的子集合,在子信 道复用初始时刻,设置权重矩阵 W 等于连接矩阵 E 中的高优先级用户,其中连接矩阵由矩阵元 $e_{j,i}$ 组 成。依据权重矩阵 W,定义表征同小区用户冲突关 系的用户自由度 f_j ,然后依据 f_j 进一步划分用户 优先级,定义 f_j 为

 $f_{j} = \sum_{i} w_{j,i}, \, u_{j} \notin L_{h}, i \in A_{\text{VLC}}, \qquad (5)$

式中: f_i 表征在服务 VLC AP 覆盖范围内的关联 用户数, f_i 越大,则表示同小区内用户竞争子信道 资源越激烈。

中优先级用户:将 $f_i > 1$ 的无干扰用户归属于 中优先级用户集合 L_m ,且 $u_i \in L_m \subset U$ 。为该类用 户分配各 VLC AP 的剩余子信道,并在 AP 间进行 子信道复用,以充分利用 VLC 小区内有限的带宽 资源。根据用户是否可以进行子信道复用,设计了 无干扰用户集合 L_m ,其权重 w_{L_n} 可表示为

$$w_{L_{\mathrm{m}}} = \frac{\sum_{j \in L_{\mathrm{m}}} H_{j,i,n}^{\mathrm{VLC}}}{\sum_{j \in L_{\mathrm{m}}} R_{n_{j}}},$$
(6)

式中: R_{n_j} 为用户 u_j 对速率的需求; $\sum_{j \in L_m} H^{\text{VLC}}_{j,i,n}$ 为无干 扰用户集合 L_m 中用户信道增益之和; $\sum_{j \in L_m} R_{n_j}$ 为 L_m 中所有用户对速率的需求之和。(6)式可保证用户对 速率的需求小、信道质量优的无干扰用户优先获得子 信道的分配和复用,以提高系统的吞吐量性能。

之后将已分配子信道资源的中优先级用户加入

临时集合 L_a ,且 $u_j \in L_a \subset U$,更新中优先级待分配 子信道用户集合 L_m 为 $L_m - L_a$,更新无干扰用户集 合 L_m 。

更新操作完成后,结合(6)式继续为中优先级用 户复用子信道,直至L_m=Ø,其中Ø表示空集。

低优先级用户:将无干扰用户集合中的 $f_j = 1$ 的用户归属于低优先级用户集合,记为 L_{low} ,且 $u_j \in L_{low} \subset U$ 。此时,在VLC网络的剩余可用子信道中,为用户 $u_j (u_j \in L_{low})$ 分配子信道,子信道集合 S_j 为

$$S_{j} = N_{\text{VLC}} - \sum_{k} S_{k}, \quad \exists \quad e_{k,i} \times e_{j,i} = 1,$$
$$i \in A_{\text{VLC}}, u_{k} \in L_{h}, u_{j} \in L_{\text{low}} \quad (7)$$

基于用户分级与干扰抑制对 VLC 网络中所有 用户进行子信道复用,以保证各 VLC AP 提供的子 信道能够根据(6)式优先分配给速率需求小、信道质 量优的用户,以达到提高系统吞吐量性能的目的;同 时,采用小区间边缘用户独占子信道并由多个 VLC AP 协同服务的方式降低了同信道干扰产生的可能 性,提高了小区边缘的用户吞吐量。

3.2.3 IGA 的适应度函数设计

根据用户分级与干扰抑制的 VLC 子信道复用 结果,设计的染色体 c 的适应度函数为

$$f(c) = \sum_{j \in U_{\text{VLC}}} \text{lb}(R_j) \,. \tag{8}$$

文献[12]表明最大化 VLC 网络的对数吞吐量 可在提升系统吞吐量的同时,在一定程度上均衡用 户间的网络接入速率。由于本文利用染色体代表一 组子信道分配方案,故适应度函数 *f*(*c*)值越大, VLC 网络吞吐量就越大,用户使用网络的速率也就 越均衡。

3.2.4 基于无效信息扰动的 IGA 染色体交叉方式

传统 GA 采用两点交叉方式,即通过互换两个交 叉点位之间的基因来拓展种群中的个体。传统遗传 算法交叉时是随机选择两个染色体,构成染色体对, 进行交叉操作,若两个染色体中存在的大量等位基因 都能满足前文所述子信道复用条件,两个等位基因中 的用户子信道复用后,服务子信道集合仍相同,此时 该染色体对再执行交叉操作将很难搜索到新的解空 间,从而影响遗传算法寻优结果。为此,本文提出了 一种基于无效信息扰动的遗传算法交叉方案。

定义待交叉染色体对为 $T_{a,b}$,即染色体 c_a 和 c_b 的无效信息 $I_{inval a,b}$ 为

$$I_{\text{inval a,b}} = \frac{\sum_{t=1}^{N_{\text{VLC}}} s_{\text{inval}_t}}{N_{\text{VLC}}},$$
(9)

(10)

式中:*s*_{inval_t}为染色体对 *T*_{a,b}中基因位 *t* 的无效交换 信息控制变量,可定义为

$$s_{\text{inval}_{t}} = \begin{cases} 1, & \left[(k_{t}, k_{t}' \in Q_{1}) \& (k_{t}, k_{t}' \in L_{m}) \right] \| \\ & (k_{t} \equiv k_{t}'), k_{t} \in c_{a}, k_{t}' \in c_{b} \\ 0, & \text{else} \end{cases}$$

式中: s_{inval_t} 为二进制变量,当且仅当染色体对 $T_{a,b}$ 中等位基因对 $k_t - k'_t (k_t \in c_a; k'_t \in c_b)$ 交换不会产生 新信息时 $s_{inval_t} = 1$; & 为"与"的逻辑运算; || 为 "并"的逻辑运算。若染色体对 $T_{a,b}$ 中等位基因对 $k_t - k'_t$ 所表征用户可复用子信道或 $k_t - k'_t$ 为同一用户, 则基因 k_t 与 k'_t 交换不会产生新信息,令 $s_{inval_t} = 1$ 。

种群中染色体对 $T_{a,b}$ 的无效信息评估完成后,为种群中所有待交叉染色体对计算平均无效信息 \bar{I}_{inval} ,其表达式为

$$\bar{I}_{\text{inval}} = \sum_{n=1}^{\frac{1}{2}N_{\text{popu}}} I_{\text{inval}}(T_{a,b}) \left/ \left(\frac{1}{2}N_{\text{popu}}\right), \quad (11)$$

式中: N_{popu} 为种群数目; $I_{Inval}(T_{a,b})$ 为种群中待交换的第 $T_{a,b}$ 个染色体对所含无效信息量。

基于无效信息扰动的染色体交叉方案能够避免 无效交叉带来的信息冗余,优化种群多样性,提升遗 传算法寻优能力。本文定义无效信息门限值 I_{th}为

$$I_{\rm th} = I_{\rm d th} + \xi \times \lambda_{\rm d cross}, \qquad (12)$$

式中: ξ 为种群扰动次数,在每代进化的初始时刻 ξ 被置为 0;λ_{d_cross}为种群扰动试探步长; I_{d_th}为当前进 化周期无效信息量初始可容忍门限。定义 I_{d_th}为

$$I_{d_{\rm th}} = I_{\rm init} + a_{\rm inc} \times \lambda_{\rm cross}, \qquad (13)$$

式中:*I*_{init}为种群最大可容忍无效信息初始值;*a*_{inc}为 种群中最优个体未变化的进化代数;λ_{eross}为无效信 息门限试探步长。

将匹配完成且满足无效信息限制的染色体对进 行自适应交叉,其自适应交叉概率为

$$P_{c} = \begin{cases} P_{c \max} \frac{\arcsin\left(\frac{f_{avg}}{f_{\max}}\right)}{\arcsin\left(\frac{f'}{f_{\max}}\right)}, & f' \ge f_{avg}, \\ P_{c \max}, & f' < f_{avg} \end{cases}$$
(14)

式中:P_{emax}为预设最大交叉概率;f_{avg}为种群中染色体的平均适应度值;f_{max}为种群中染色体的最大适应度值;f'为待交叉染色体对中较大的适应度值。反正弦函数具有非线性自适应,使得 P_e能更好地描述种群适应度值的分散程度^[13]。

自适应变异概率更新与(14)式类似,用预设最 大变异概率 P_{m max}取代(14)式中的 P_{c max}即可。

3.3 WiFi子信道分配

针对受光线传输性能影响而无法用 VLC AP 的用户 $u_j(u_j \in U_{Wi})$,首先为其预分配信道增益最 大 WiFi 子信道 $n(n = \underset{w \in NWi, i \in AWi}{\operatorname{argmax}} H_{j,i,w}^{Wi})$ 服务,其中 $H_{j,i,w}^{Wi}$ 为第j个用户接入第i个 WiFi AP 的信道w的信道增益,w为信道序号,更新 WiFi 网络剩余子 信道集合 N_{Wi} 为 $N_{Wi} - \{n\}$ 。其次,根据用户差异化 速率需求,设计用户权重 w_{u_j} ,为剩余 WiFi 子信道 寻找匹配用户。 w_{u_i} 可表示为

$$w_{u_j} = 1 - \frac{R_j}{R_{u_j}} \,. \tag{15}$$

(15)式可保证在 WiFi 子信道分配初期 $R_j < R_{n_j}$ 时,给速率累积与需求速率差异最大的用户分配 子信道,使所有用户需求都能得到满足;当 $R_j \ge R_{n_j}$ 时,可协调用户间的子信道分配,当用户速率需求相 同时,使子信道资源偏向为累积速率较小的用户分 配,以提高用户使用网络速率的公平性。

综上所述,本文所提的 IGA-ISSA 算法的具体 步骤如下:

输入:房间尺寸、发射端 LED 阵列数目、各 LED 发射功率、LED 被遮挡和反射等影响光线传输 通信出现的概率、用户集合 U、用户位置、VLC AP 可提供子信道集合 N_{VLC}、WiFi 可提供子信道集合 N_{Wi}、VLC AP 集合 A_{VLC}、WiFi AP 集合 A_{Wi},以及 WiFi 发射机参数等信息。

输出:各用户子信道分配结果。

1)初始化用户编号 $j=1, j \in U$, VLC 用户集合 $U_{\text{VLC}} = \emptyset$, WiFi 用户集合 $U_{\text{Wi}} = \emptyset$ 。

2)判断 j = |U|,若是,表示用户选择接入子网 结束,进入 VLC 和 WiFi 资源分配优化子过程,分 别转步骤 4)与步骤 13);否则,转步骤 3)。

3)分配用户*j*接入子网,计算用户*j*与 VLC AP 信道增益,判断是否有 VLC AP 可用,若有,接 入 VLC 子网, $U_{VLC} = U_{VLC} \cup j$;否则, $U_{W_i} = U_{W_i} \cup j$; *j*=*j*+1,转步骤 2)。

4)用 IGA 算法优化 VLC 子网用户的子信道资 源分配,令 *k* = 0,*k* ∈ *U*_{VLC}。

5)初始化 IGA 种群,令进化迭代计算器的进化 代数 a=0。

6)根据 3.2.2 节对用户进行分级,并采用干扰 抑制为用户确定子信道复用方式。

7)根据 3.2.3 节(8)式计算种群中每个个体的适应度值。

8) 判断进化迭代计算器的进化代数 a 是否大 于预设最大进化代数 a_{max}或者连续 15 代种群中最 优个体适应度值是否不变,若是,输出 VLC 网络下 所有用户子信道分配结果,转步骤 19)。

9)执行 IGA 轮盘赌选择个体的操作。

10)进行种群扰动生成待交叉染色体对。

11)根据(11)式计算种群中染色体对的平均无效信息 \bar{I}_{inval} 。

12)根据(12)式计算无效信息量门限值 I_{th} ,判断若 $\overline{I}_{inval} < I_{th}$,接受扰动后生成的染色体对,根据(14)式对染色体进行自适应交叉和变异,进化代数a加1,变为a+1,转步骤 6);否则,转步骤 10),重新扰动染色体之间的组合,生成新的染色体对。

13)令用户 $j=0, j \in U_{w_i}$ 。

14)评估已分配资源用户数 *j* 是否等于 WiFi 网络服务用户总数,若是,转步骤 16)。

15)为用户 *j* 分配子信道增益最大的 WiFi 子 信道 $n,n = \underset{w \in Nw_i, i \in Aw_i}{\operatorname{argmax}} H_{j,i,w}^{W_i}$,更新 WiFi 可用子信道 集合 N_{w_i} 为 $N_{w_i} = \{n\}, j$ 变为 *j* +1。

16)令未分配子信道编号 $i_s = 0, i_s \in N_{Wi}$ 。

17)判断 *i*_s是否等于未分配子信道数目,若是,转步骤 19);否则,根据(15)式计算用户信道分配的权重 *w<sub>u_s*。
</sub>

18)为用户权重 *w*_{*u_j*最大值对应用户分配子信 道 *i*_s, 使 *i*_s加 1,转步骤 17)。}

19)分别输出 VLC 网络和 WiFi 网络中用户的 子信道分配结果。

4 仿真及分析

4.1 仿真参数设置

本文在 10 m×10 m×3 m 矩形均匀布局中测 试改进遗传算法的干扰抑制子信道分配(IGA-ISSA)方案的收敛速度、最优值、各子信道分配方案 的系统吞吐量和用户满意度性能,对比方案有:改进 自适应遗传算法作用下的子信道分配(IGA-SA)方 案^[14]、改进自适应遗传算法作用下的子信道分配 (IAGA-SA)方案^[14],以及异构 VLC/WiFi 网络提 出的优先分配信道增益高的链路的子信道分配方 案,然后再在剩余子信道分配过程中依据用户速率 需求为用户选择 AP,并为其分配子信道^[9],由于文 献[9]未进行特殊的干扰抑制策略,故称其为不考虑 干扰抑制的子信道分配(NICSA)方案。矩形均匀 布局结构中 VLC AP 与 WiFi AP 坐标如图 3 所示。 用户设备距地面高度为1m,异构 VLC/WiFi 网络 下各 VLC AP 提供 128 个子信道,各 WiFi AP 提供 64个子信道,用户速率需求在10~30 Mbit/s 随机 产生,总用户数为25,用户随机分布在房间内。 VLC AP 调制方式采用直流偏置光正交频分复用 (DCO-OFDM), 调制方式为 16QAM (Quadrature Amplitude Modulation)^[10]。VLC 发射机及其他系 统参数如表1所示。IGA-ISSA 交叉概率 $P_c = 0.9$, 变异概率 $P_m = 0.1$; IGA-SA 方案最大交叉概率 $P_{cmax} = 0.9$,最小交叉概率 $P_{cmin} = 0.1$,最大变异概 率 P_{m max}=0.05,最小变异概率 P_{m min}=0.01;IAGA-SA方案交叉概率 $P_{c}=1.0$, 变异概率 $P_{m}=0.5$ 。

表1 仿真参数

Table 1	Simulation	parameters
---------	------------	------------

		1	
Parameter	Value	Parameter	Value
Half power angle $\varphi_{1/2}$ /(°)	60	Max invalid information I_{init}	0.3
Power of LED array $P_t^{ m VLC}$ /W	15	Disturbance step $\lambda_{d_{cross}}$	0.02
VLC bandwidth $B_{\rm VLC}$ /MHz	40	Information threshold step $\lambda_{\rm cross}$	0.01
VLC subchannels $N_{\rm VLC}$	128	Optical filter gain T_{s0}	1.0
WiFi transmit power $P_t^{ m Wi}$ /dBm	20	Optical concentrator gain g_0	1.0
WiFi bandwidth $B_{ m WiFi}$ /MHz	22	Surface area of detector A / cm^2	1.0
WiFi subchannels num $N_{\rm RF}$	64	Photoelectric efficiency γ /(A•W ⁻¹)	0.53
Receiver view angle FOV /(°)	60	Population size of GA N_{popu}	50
VLC outage probability P_{block}	0.5	Maximum iteration of GA a_{max}	100

4.2 遗传算法收敛性能分析

在表 2 中,除不采用 GA 的 NICSA 方案外,将 其他两种遗传算法应用于本文提出的干扰抑制方案 当中。所提 IGA-ISSA 方案在无效信息扰动的交叉 过程中将带来额外的时间开销,虽比 IGA-SA 方案 收敛速度略差,但显著高于 IAGA-SA 方案的收敛 速度。且得益于无效信息扰动的交叉过程,所提 IAGA-SA 方案能丰富种群的多样性,具有较高的 求解精度,其最优值较 IGA-SA 方案与 IAGA-SA 方案分别提高了 2.4%和 4.4%。

表 2 三种遗传算法收敛性能

Table 2 Convergence performances of three

genetic algorithms

Scheme	Iterative time for	Number of
	convergence	optimal value
IAGA-SA	168	63.87
IGA-SA	32	65.08
IGA-ISSA	53	66.7

4.3 仿真分析

假设用户在房间内随机步行移动,系统周期性 地为每个用户收集可用 VLC AP 信道的可用状况 和信道状态信息,并在每个周期为用户执行一次子 信道分配方案。图 4 为异构 VLC/WiFi 网络中系 统吞吐量随用户数的变化情况,除不考虑干扰抑制 的 NICSA 方案外,其余 3 种进行干扰抑制的遗传算 法的吞吐量性能较高,所提 IGA-ISSA 方案较之异 构 VLC/WiFi 网络中的子信道分配方案 NICSA 系 统吞吐量提高了 129.01%,即表明所提干扰抑制方 案有效。较之基于改进 GA 的 IGA-SA 方案提高了 5.71%,即表明所提基于无效信息扰动的遗传算法 的搜索性能更强。此外,当用户数超过 13 后, NICSA 方案系统吞吐量几乎不变,这是因为 NICSA 使网络资源向房间中信道质量好的用户倾

图 4 系统吞吐量随用户数变化情况

斜,削弱了用户之间使用速率的公平性。

图 5 为异构 VLC/WiFi 网络中,系统吞吐量随 VLC 链路中断概率的变化情况。VLC 链路中断概 率越高,VLC AP 产生信号重叠区域的可能性减小, 与此同时 VLC 网络中接入用户数与 VLC 网络可 以提供的吞吐量随之下降,相应地更多用户会接入 WiFi AP,这将造成 WiFi 网络负载增加,导致异构 VLC/WiFi 网络系统吞吐量下降。所提 IGA-ISSA 方案系统吞吐量普遍更高,VLC 链路中断概率增加 使 VLC AP 产生信号重叠区域的可能性减小,IGA-ISSA 方案此时将更多用户划分至中、低优先级用 户,并根据(6)式执行有效的子信道复用,仍能保证 一定的吞吐量优势。

考虑到室内环境下用户信道状况各有不同,用 户速率需求决定了用户间竞争子信道资源的激烈程 度,由此定义满意用户为系统分配用户的速率达到 用户速率需求,而用户满意度为用户实际获得的分 配速率与需求速率的比值。图6为4种方案在不同 用户总数下的满意用户比例。满意用户比例为1,

表示该子信道分配方案能够充分满足房间内所有用 户自身速率需求。分析图 6 可知,随着用户数的增 多,用户间资源竞争更为激烈,满意用户比例下降, 而本文 IGA-ISSA 方案满意用户比例总体上优于其 他 3 种方案,这表明当网络负载增加时,本文所提方 案可以有效协调子信道资源利用,使更多用户能够 获得较好的用户体验。

5 结 论

为了提高异构 VLC/WiFi 网络的系统吞吐量, 抑制子信道干扰,本文研究了改进遗传算法的干扰 抑制子信道分配方案。根据用户通信受光线传输情 况,对接入 VLC 的用户依据用户在干扰图中的位 置特征划分等级,为不同等级的用户设计了干扰抑 制的子信道分配方案,并设计了根据无效信息扰动 的染色体交叉方案来优化遗传算法搜索性能。对接 入 WiFi 网络的用户,根据用户的差异化速率需求, 为用户分配子信道。本文研究内容对新一代 5G 应 用场景下,用户接入 VLC 提供了有效的干扰抑制 子信道资源分配方案,提高了用户体验和系统性能。

参考文献

- Wang F, Wang Z C, Qian C, et al. Efficient vertical handover scheme for heterogeneous VLC-RF systems
 J. Journal of Optical Communications and Networking, 2015, 7(12): 1172-1180.
- [2] Ye C G, Feng R H, Mao L H. New kind of visible light-RFID with ACO-OFDM modulation [J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2019, 31(1): 72-79.
 叶崇光,冯人海,毛陆虹.采用 ACO-OFDM 调制新 副可用来的缺意识即运输系统[1]。季度增少去营资格

型可见光-射频识别标签系统[J].重庆邮电大学学报 (自然科学版), 2019, 31(1): 72-79.

- [3] Chi N, Lu X Y, Wang C, et al. High-speed visible light communication based on LED [J]. Chinese Journal of Lasers, 2017, 44(3): 0300001.
 迟楠,卢星宇, 王灿,等. 基于 LED 的高速可见光通 信[J]. 中国激光, 2017, 44(3): 0300001.
- [4] Yin H H, Dong Y Q, Zou Q, et al. Design and implementation of a visible light communication system based on the mobile scenario [J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2017, 29(4): 487-493.

尹浩浩,董雨晴,邹倩,等.移动场景下一种可见光 通信系统的设计与实现[J].重庆邮电大学学报(自 然科学版), 2017, 29(4): 487-493.

- [5] Bai R L, Tian H, Fan B, et al. Coordinated transmission based interference mitigation in VLC network[C] // 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), September 6-9, 2015, Boston, MA, USA. New York: IEEE, 2015: 15731795.
- [6] Fu Y R, Hong Y, Chen L K, et al. Enhanced power allocation for sum rate maximization in OFDM-NOMA VLC systems [J]. IEEE Photonics Technology Letters, 2018, 30(13): 1218-1221.
- Kashef M, Abdallah M, Al-Dhahir N, et al. On the impact of PLC backhauling in multi-user hybrid VLC/RF communication systems [C] // 2016 IEEE Global Communications Conference (GLOBECOM), December 4-8, 2016, Washington, DC, USA. New York: IEEE, 2016: 16655266.
- [8] Basnayaka D A, Haas H. Design and analysis of a hybrid radio frequency and visible light communication system [J]. IEEE Transactions on Communications, 2017, 65(10): 4334-4347.
- [9] Wu W H, Zhou F, Yang Q H. Adaptive network resource optimization for heterogeneous VLC/RF wireless networks [J]. IEEE Transactions on Communications, 2018, 66(11): 5568-5581.
- [10] Kazemi H, Haas H. Downlink cooperation with fractional frequency reuse in DCO-OFDMA optical attocell networks [C] // 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, Kuala Lumpur, Malaysia. New York: IEEE, 2016: 16141724.
- [11] Liu Y F, Dai Y H. On the complexity of joint subcarrier and power allocation for multi-user OFDMA systems [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 583-596.
- [12] Eroğlu Y S, Güvenç I, Şahin A, et al. Multi-element VLC networks: LED assignment, power control, and optimum combining [J]. IEEE Journal on Selected Areas in Communications, 2018, 36(1): 121-135.
- [13] Yang C R, Qian Q, Wang F, et al. An improved adaptive genetic algorithm for function optimization [C] // 2016 IEEE International Conference on Information and Automation (ICIA), August 1-3, 2016, Ningbo, China. New York: IEEE, 2016: 675-680.
- [14] Chen Y, Shen Q X, Liu H L. Optimization algorithm of receiver optical power uniformity in indoor visible light communication [J]. Chinese Journal of Lasers, 2018, 45(5): 0506003.
 陈勇,沈奇翔,刘焕淋.室内可见光通信中接收光功率均匀性优化方法[J].中国激光, 2018, 45(5): 0506003.